47 research outputs found

    ‘Medusa head ataxia’: the expanding spectrum of Purkinje cell antibodies in autoimmune cerebellar ataxia. Part 3: Anti-Yo/CDR2, anti-Nb/AP3B2, PCA-2, anti-Tr/DNER, other antibodies, diagnostic pitfalls, summary and outlook

    Get PDF
    Serological testing for anti-neural autoantibodies is important in patients presenting with idiopathic cerebellar ataxia, since these autoantibodies may indicate cancer, determine treatment and predict prognosis. While some of them target nuclear antigens present in all or most CNS neurons (e.g. anti-Hu, anti-Ri), others more specifically target antigens present in the cytoplasm or plasma membrane of Purkinje cells (PC). In this series of articles, we provide a detailed review of the clinical and paraclinical features, oncological, therapeutic and prognostic implications, pathogenetic relevance, and differential laboratory diagnosis of the 12 most common PC autoantibodies (often referred to as ‘Medusa head antibodies’ due to their characteristic somatodendritic binding pattern when tested by immunohistochemistry). To assist immunologists and neurologists in diagnosing these disorders, typical high-resolution immunohistochemical images of all 12 reactivities are presented, diagnostic pitfalls discussed and all currently available assays reviewed. Of note, most of these antibodies target antigens involved in the mGluR1/calcium pathway essential for PC function and survival. Many of the antigens also play a role in spinocerebellar ataxia. Part 1 focuses on anti-metabotropic glutamate receptor 1-, anti-Homer protein homolog 3-, anti-Sj/inositol 1,4,5-trisphosphate receptor- and anti-carbonic anhydrase-related protein VIII-associated autoimmune cerebellar ataxia (ACA); part 2 covers anti-protein kinase C gamma-, anti-glutamate receptor delta-2-, anti-Ca/RhoGTPase-activating protein 26- and anti-voltage-gated calcium channel-associated ACA; and part 3 reviews the current knowledge on anti-Tr/delta notch-like epidermal growth factor-related receptor-, anti-Nb/AP3B2-, anti-Yo/cerebellar degeneration-related protein 2- and Purkinje cell antibody 2-associated ACA, discusses differential diagnostic aspects and provides a summary and outlook

    ‘Medusa head ataxia’: the expanding spectrum of Purkinje cell antibodies in autoimmune cerebellar ataxia. Part 3: Anti-Yo/CDR2, anti-Nb/AP3B2, PCA-2, anti-Tr/DNER, other antibodies, diagnostic pitfalls, summary and outlook

    Full text link

    Ten considerations for conservation policy makers for the post-covid-19 transition

    No full text
    Public health and safety concerns around the SARS-CoV-2 novel coronavirus and the COVID-19 pandemic have greatly changed human behaviour. Such shifts in behaviours, including travel patterns, consumerism, and energy use, are variously impacting biodiversity during the human-dominated geological epoch known as the Anthropocene. Indeed, the dramatic reduction in human mobility and activity has been termed the “Anthropause”. COVID-19 has highlighted the current environmental and biodiversity crisis and has provided an opportunity to redefine our relationship with nature. Here we share 10 considerations for conservation policy makers to support and rethink the development of impactful and effective policies in light of the COVID-19 pandemic. There are opportunities to leverage societal changes as a result of COVID-19, focus on the need for collaboration and engagement, and address lessons learned through the development of policies (including those related to public health) during the pandemic. The pandemic has had devastating impacts on humanity that should not be understated, but it is also a warning that we need to redefine our relationship with nature and restore biodiversity. The considerations presented here will support the development of robust, evidence-based, and transformative policies for biodiversity conservation in a post-COVID-19 world. Funding was provided by the Natural Sciences and Engineering Research Council of Canada, Carleton University, and the Ottawa-Carleton Institute of Biology. We thank several referees for their thoughtful input on the paper
    corecore